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Differential calculi on the quantum group GL,,J2) 

Folkert Muller-Hoissent 
lnstitut f i r  Exoretische Physik, Universitst GSttingen, D-3400 GBttingen, Federal 
Republic of Germany 

Received 2 October 1991 

Abstract. We present a systematical study of left-covariant differential C ~ ~ C U ~ U S  on the 
quantum group GL,,(2) ,  a two-parameter deformation of the general linear group. In 
particular, we explicitly construct the most general bicovariant calculus. It depends on a 
new parameter s. The corresponding ‘Lie algebra’ of left-coinvariant vector fields is a 
two-parameter deformation of the classical Lie algebra. p and q appear only in the 
combination r = p q  In the limit p,  q - 1 one obtains non-standard bicovariant differential 
calculi on the classical Lie group. 

1. Introduction 

The concept of a space(time) continuum has been a major ingredient in all successful 
physical theories. Nevertheless, there are some arguments that on a submicroscopic 
scale this concept has to be abandoned (see also [I]). Spacetime intervals are measured 
with (test) particles. But the resolution is limited by the quantum mechanical wavelike 
properties of particles. In order to probe spacetime at smaller and smaller length scales 
one needs heavier and heavier particles, corresponding to smaller and smaller 
wavelength. But as these become heavier they cannot be regarded as test particles any 
longer since their effect on the spacetime (curvature) is not negligible any more. The 
assumption that spacetime is smooth down to arbitrarily small distances is therefore 
without experimental support. On the other hand, this idealization might be responsible 
for the unsurmountable problems which one meets if one tries to understand the 
gravitational interaction as mediated by ‘gravitons’ considered to be similar as other 
particles. 

This motivates us to look for a concept which could replace the notion of spacetime 
and on which a physical theory could be based. An indication how to do  this originates 
from the following consideration (see also [Z, 31). If at a sufficiently small length scale 
coordinates become non-commuting operators, it will be impossible to measure the 
position of a particle exactly. In this way one may hope to overcome the ultraviolet 
divergencies of conventional quantum field theory which are due to the-in principle- 
possibility of measuring field oscillations at one point. We therefore expect non- 
commutativity to be an essential ingredient of the generalized spacetime concept. It 
is conceivable that such a non-commutativity at small length scales is due to a kind 
of ‘quantization’ independent of what we are used to understand as quantization. But 
it may well turn out that there is a deeper relation between these two quantizations. 

t Bitnet address: FMUELLE @ DGOGWOGI 
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Ageneral framework in which such a n  approach can be pursued is non-commutative 
geometry [4-6lt. The basic observation is that a manifold is completely characterized 
by the (commutative) algebra of functions on it. Geometrical concepts like exterior 
and covariant derivative can then be formulated as operations on this algebra and 
generalized to non-commutative algebras (for which there is no longer an underlying 
manifold). 

The best-understood examples are groups which, reformulated in this algebraic 
sense, are turned into commutative Hopf algebras [12]. ‘Quantum groups’ [13-161 are 
(special kinds of) non-commutative Hopf algebras which are deformations of classical 
groups (as Hopf algebras). These are not mathematical artifacts. They appear in the 
quantum inverse scattering method (see [ 171 for an introduction), in two-dimensional 
conformal field theories and certain integrable models [ 181. Quantum groups generalize 
our more familiar concepts of symmetries to the realm of non-commutative geometry 
[14]. Presuming a kind of non-commutative version of Einstein’s general relativity, we 
expect quantum groups to take over the role of isometry and gauge groups. Certain 
quantum groups may even serve as generalized spacetime models. 

A major step in such a programme is to develop differential calculus on quantum 
groups. This has been done by Woronowicz [ 19,201 and described in a n  easier accessible 
way by Wess and Zumino [21-231 (see also [24-271). Whereas there is a distinguished 
classical differential calculus, this uniqueness is lost if non-commutativity is introduced. 
There are many different differential calculi on a quantum group. On a classical Lie 
group there is a left and a right action of the group on  itself and these commute. The 
requirement of such a ‘bicovariance’ 1201 on a quantum group restricts the possible 
differential calculi. However, as we will show for the example of the two-parameter 
deformation of GL(2) [23,28,29] this condition does not fix the differential calculus. 
There are two I-parameter families of bicovariant differential calculi. 

In section 2 we briefly recall how groups are reformulated as Hopf algebras, 
concentrating on  the example of the (complex) general linear group GL(2). Section 3 
introduces its two-parameter deformation GL,,(2) and some formulae needed in the 
following. These two sections do not contain new results. 

Differential calculus on quantum groups is the subject of section 4. Instead of 
starting with the general, rather abstract formalism [20] we develop the calculus from 
the example GL,,(2) in a more pedagogical way, systematically extending recent work 
by Schirrmacher, Wess and Zumino [23]. They presented an example of a right- 
covariant differential calculus. A somewhat simpler example (of a left-covariant cal- 
culus) is presented in section 5 and a deformation (as a Hopf algebra) of the Lie 
algebra of GL(2) is derived as the algebra of left-coinvariant vector fields on the 
quantum group. The corresponding analysis parallels that in [231. 

In section 6 we construct all first-order bicovariant differential calculi [20] on 
GL,,(2).  A special example of a bicovariant calculus on this quantum group has been 
communicated previously [29, 301. Section 7 recalls some results on higher-order 
differential calculus from the work of Woronowicz [20] and thereby paves the way for 
the calculation of the I-form commutation relations (and thus the generalized wedge 
product) for the general bicovariant calculus on GL,,(2).  This is done in section 8. 

Some examples are extracted in section 9 from these general results. They include 
non-standard bicovariant differential calculi on the classical Lie group GL(2). Finally, 
some conclusions and further remarks are collected in section 10. 

t  or some examples applications of non-commutative geometry we also refer to [2,7-111 
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2. Groups as Hopf algebras 

Since quantum groups are considered as (special examples of) non-commutative Hopf 
algebras, one first has to understand in which sense ordinary (Lie) groups can be 
viewed as commutative Hopf algebras. The general idea behind it is a reformulation 
of structures of a manifold M in terms of the algebra &4 of functions on Mt. Let us 
consider the group G = GL(2, C). An element is represented by an invertible matrix .:=(e :) 
with complex entries. Iff is a (C-valued) function on G, the group multiplication m :  
G x G+ G can be reformulated as an operation A: SP + SPO SP such that 

A ( f ) ( g ,  g'):=f(m(g, g')) Vg,g'eG (2.2) 

A ( f )  = f o  m. (2.3) 

respectively 

A is an algebra homomorphism since 

A ( f + h )  = A ( f ) + A ( h )  A ( f h )  = A ( f ) A ( h )  U c f )  = c W f )  (2.4) 

for any two functions 1; h on G and C E C .  Because of this property the 'co-product' 
A is already fixed if we know its action on a basic set of functions. In our special case 
G = GL(2, C) we have a natural choice, namely 

a ( ( ;  :)):=a b ( ( ;  f ) ) : = P  

c ( ( :  i ) ) : = y  d ( ( ;  : ) ) : = 8  

A5 functions on G we consider polynomials$ of the 'elementary functions' a, 6, c, d 
and the 'identity function' D. A linear operator on the algebra SI is then determined 
by its action on the monomials ahd'b"'c" (where IC, I, m, nENu{O} and ao=n etc). 

In order to calculate the co-product of a, b, c, d, we have to consider 

so that 

a @ a + b O c  a O b + b O d  
A(" c d ' ) = (  c Q a f d @ c  c O b + d O d  

Here we have used a compact notation for 

A ( a )  = a O a +  b O c  

etc. In addition, we have 

&(a) =ma. 
t This is an algebra over C with the pointwise addition and multiplication of functions. 
f We will not discuss the extension to larger classes of functions. This is a delicate point for non-compact 
quantum groups. 
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In a similar way as the group multiplication is translated into a homomorphism of 
the algebra d (the co-product) the existence of a unit group element is reformulated 
into the ‘co-unit’ algebra homomorphism 

(2.10) 

Furthermore, the existence of an inverse group element translates to an algebra (anti-) 
‘rulllurlrulp,rllsln 1 
c L:._.L 

(2.11) 

which is called ‘antipode’. Again, equations (2.10) and (2.11) are compact notation for 

E ( a ) = l  E (  b) = E (  c) = 0 E ( d ) = l  (2.12) 

S(a )=d / (ad -bc )e t c .  (2.13) 

The co-product, co-unit and antipode supply SP with a Hopf algebra structure [12]. 

Definition. A C-algebra SP is a Hopf algebra, if there is 

associative’$: 
( I )  a C-algebra homomorphism (co-product) A : S P + d @ S P  which is ‘co- 

( A @ U ) ~ A =  ( l @ A ) o A  (2.14) 

(2) a C-algebra homomorphism (co-unit) E:SP+C such that 

( n o E ) a A = n  ( E m ) o A = n  (2.15) 

(note that d O C = C @ d = d ) ,  
(3) a C-algebra antihomomorphism (antipode) S: d+ SP which satisfies 

p [ ( l @ S ) o A ] = ~  p[(S@U)0P]=e (2.16) 

where p stands for the algebra product d@d+ SP. 

We will also demand that (2.9) holds. Then €(I) = 1 and S(1) = U .  The Hopf algebra 
structure as defined above only requires that A(U) is idempotent (i.e. A(n)* = A(U)) and 
commutes with all co-products. Weaker Hopf algebras in this sense have been con- 
sidered in [31]. 

3. The quantum group GL,,JZ) 

‘Coordinates’ x and y satisfying 

XY = qYx 
with a complex parameter q are said to span a ‘quantum plane’ [14,21]. Consider a 
transformation 

t Here the algebra .$ is commutative, so this is a homomorphism as well as an antihomomorphism. 
$Here and in the fallowing we use 1 (which was introduced as the unit in 4 to also denote the identity 
map on .$. 
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which preserves the relation (3.1). We assume that a, b, c, d commutet with the 
coordinates x and y .  This leads to 

ac = qca bd = qdb ad = da + qcb - ( l / q ) b c  (3.3) 

which does not determine all commutation relations between the entries of the transfor- 
mation matrix. Let us therefore extend the quantum plane structure by introducing 
'differentials' 

c :=dx 7 := dy (3.4) 

57 + (1/p)75= 0 # 2 = $ = 0  (3.5) 

such that 

where p is another parameter$. In the limit p + 1 we then recover the familiar anticom- 
mutation of differentials. Assuming that the exterior derivative d commutes with a, b, 
c, d and requiring that the transformed differentials also satisfy the relations (3.5), we 
find 

bc = ( q / p ) c b  ab =pba cd = pdc. (3.6) 

Equations (3.3) and (3.6) are the commutation relations of a two-parameter deformation 
of GL(2, C) [23,28,29]. Co-product and co-unit are defined, respectively, by8 

a @ a + b @ c  a @ b + b @ d )  '(C" : ) = ( c @ a + d @ c  c O b + d @ d  

.(a c d  " = ( I  0 1  0) 

in analogy with the commutative case described in section 2. 
The relation (2.16) for an antipode demands 

(3.9) 

which means that the matrix with entries S ( a ) ,  S ( b ) ,  S(c) ,  S ( d )  has to be a left and 
right inverse for the matrix with entries a, b, c, d.  In the 'classical' case the inverse is 
constructed using the determinant of the latter matrix. A generalized determinant 

(3.10) 

can be defined in the 'quantum' case by the transformation formula 

e 7 '  = 957 (3.11) 

so that 

9 = a d  -pbc = da -q-'bc. (3.12) 

t This is automatically implemented if we understand the products on the RHS of (3.2) 8s tensor products, 
e.g. x ' = o @ x + b @ y .  
%Mare general relations than (3.1) and (3.5) may be considered. 
$This has to be supplemented by the 'trivial' definitions A(Q) =IO1 and c ( Q )  = 1. 
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The commutation relations with a, b, c, d are given by 

9 a  = a 9  9 d  = d 9  a b  = ( p / q ) b a  9 c  = ( q / p ) c 9 .  (3.13) 

In order to construct an antipode, we have to assume that 9 has an inverse 

9-19 = I =  99-1. (3.14) 

Acting on the commutation relations (3.13) with a-' from left and right, we find 

(3.15) 

and from 

A ( 9 )  = 909 A ( ~ ) A ( ~ - I )  =A(n)  =non (3.16) 

we obtain 

A ( 9 - ' ) = 9 - ' @ 9 - ' .  (3.17) 

Now the antipode is determined by 

and we have 

S ( 9 )  = 9-1 S(9-l) = 9. (3.19) 

Although the antipode has some properties of an inverse, we have S2# 1 (see also 
[13]). Indeed, 

s - ' ( a )  = S ( a )  S- ' (b )  = p q S ( b )  

(3.20) 
S - ' ( d ) = S ( d ) .  1 

P4 
S - ' ( c )  = - S ( c )  

One still has to check consistency in the following sense. Are all the monomials 
akd'bmc" functionally independent?$ The problem is that there are several different 
ways of reordering a given monomial having more than two different generators by 
using the commutation relations. If these do not lead to identical results, we obtain 
non-trivial relations between the generators or restrictions on the deformation para- 
meters. For example, the two possibilities 

cba ycab -+ acb > abc 
\bca --f bac 

of reordering cba into abc indeed lead to the same result. According to Manin [321 it 
is actually sufficient to check consistency for the cubic monomials (see also [281). This 
is easily done in the case under consideration. The resulting Hopf algebra will be 
denoted as GL,,(2).  

7 More precisely, we extend the algebra by an element 9-l satisfying the relations listed in the following. 
+In the case of Lie algebras the corresponding result is known as the PoincarC-Birkhoff-Wilt theorem. 



Differential calculi on the quantum group GL,,(Z) 1709 

The commutation relations of GL,,,(2) can be expressed with the help of the 
tt-matrix 

0 
1 0 q - p - '  qp-1 

R =  i' 1 i) 
0 0  o q  

(3.21) 

(3.23) 

The entries of the matrix k are numbered as ( 1 ,  l), (1,2), (2, l), (2,2).  For example, 
E",, = qp-'. The matrix is a solution of the quantum Yang-Baxter equation [23,28]. 

4. Differential calculus on GL,,,(2) 

The central object of differential calculus is the exterior derivative 

d: sP-*A'(sP) =spaceof 1-forms (4.1) 

satisfying d2 = 0 and the Leibniz rule 

d( f h )  = (df)h + f d h  V f ; h € s P  (4.2) 

In order for this equation to make sense,we have to be able to multiply 1-forms from 
the left and from the right by elements of Op. Therefore A'(&) must be an d-bimodule. 

In differential geometry of the classical Lie groups left (and right) invariant 
(Maurer-Cartan) 1-forms play a special role. To find their quantum analogues we have 
to translate first the group left action on I-forms to a left-coaction: 

Are : A'(SP)-* sPOA'(d). (4.3) 
This should be a bimodule homomorphism, i.e, 

V f e  d, w E A'(&) (4.4) 
Are(fw) =A(f)Az(w) 

A d o f )  = Are(o)A(f) 

such that 

Azd=(lOd)A. (4.5) 

To understand the last condition, let us look at the case GLp,,(2): 

d a  db b . da db  
AS(dc dd)=(: d)@(dc dd) 

c@da+dOdc  c O d b + d O d d  
a O d a +  bOdc a O d b +  bOdd 

(4.6) 
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This is what we should expect as the left coaction on the differentials (which generate 
A'(&)). A I-form 0 is 'left-coinvariant' if 

A,O=QOO. (4.7) 

In analogy to the 'classical' case we introduce left-coinvariant Maurer-Cartan forms 
on GLp.,(2) by 

S ( a ) d a + S ( b ) d c  S ( a ) d b + S ( b ) d d  
= ( S (  c) d a  + S(d)  dc S(c) db + S(d)  d d  

~1 / d d a  - a-'b dc  d db - q-lb dd\  =s-' \ -qc d a + a  dc -qc d b + a  d d  )' (4.8) 

Let us check that these I-forms are indeed invariant under the left-coactiont 

A,O'=A,(S(a)da+S(b)dc) 

= A0 S(a)Au(da) + A0 S(b)A,(dc) 

= A(W')[A(d)(Q@d)A(a) - q-'A(b)(l@d)A(c)] 

= A(W')[(cb - q- 'ad)O b d c +  (da - q- 'bc)Od da]  

= A(9- ' )9@90 '  

= Q @ O ' .  (4.9) 

AZOK =QOOK ( K  = 1,. . . ,4). (4.10) 

Similarly we obtain 

Applying d to the commutation relations of GL,,(2) leads to 

(da)b+a(db)  =p(db)a+pbda  (4.11) 

etc. Using (3.9) the defining formula for the O K  can be inverted to 

d(: :)=(: d b)(8' 8' 82) 0' ' (4.12) 

Remark. The differentials of a, b, c, d satisfy the general formula [20] 

df=(XK * f ) O K  = ( ~ O X K ) A ( ~ ) O ~  (f E -4 (4.13) 

(summation over K).  We have 

x K ( n L j  = &L (4.M) 

0 with q = a ,  a2=b,  a3=c, a l = d .  

i This is the only calculation where we use (4.5) 
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Equation (4.12) allows us to express the differentiated commutation relations in terms 
of the O K  as follows 

aO'b-ab8' +a202-pa02a -pb203+ b0'b+ab04-pb04a = O  

aO'c-qcO'a + ( a d  -pbc)O'+ bO'c - qdO'a = O  

aO'd - a d 0 1 + a c 0 2 - c 0 2 a f ( q - '  -p )a02c  -pbdO'+ b03d 

+ ad04-d04a +(q- '  -p)b04c = 0 

qcO'b -pbcO' + ace2 -pa02c -pbdO'+ qd0'b t pbc04-pb04c = 0 

q(ad-pbc )02-a02d  f q c 0 2 b + q d 0 4 b -  b04d = O  

cO'd - cdO'+ ~ ~ 8 ~ - p ~ O ~ ~ - p d ~ O ' + d O ' d  + cd04-pd04c = 0. 

(4.15) 

These equations restrict the commutation relations between left-coinvariant 1-forms 
and elements of d. But they do not fix the commutation structure completely. Let us 
specify a commutation structure byt  

O K f =  Q ( f ) E O L  (Vf E 4 (4.16) 

where Q( f) is a matrix with entries in d, respectively 0 a map from SP to d. From 

Q(fh):O"= O K f h = ( O K f ) h = Q ( f ) : O L h  = O ( f ) ~ O ( h ) ~ O L  (4.17) 

we conclude that 

Q ( f h )  = O ( f ) O ( h )  V x h E d  (4.18) 

Using the general form of the co-product 

A(f)=ZfmOfL 
m 

(4.20) 

so that [ZO, 241 

AoQ=(U@O)A. (4.22) 

t Underlying is the assumption that the 8": form a basis o f  the space of I-forms. In the following we use 
the summation convention. For example, summation over L i s  understood in (4.16). 
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Let us investigate these constraints on  the matrix 0 (which determines the commutation 
structure between 1-forms and elements of the algebra SP) in the case of GL,,(2). 
First we note that 

o(n)f = s:a. (4.23) 

Inserting the general expression 

(4.24) k I m n  @ ( a ) :  = E  AEkrm..a d b c 
in (4.22) leads to 

@ ( a )  = aA+ bC O ( c )  = CA+ dC (4.25) 

with 4x4-matrices A and C (with entries in e). Similarly, we find 

0 ( b )  = aB+ bD O ( d )  = cB+ dD (4.26) 

with matrices B and D. This is all we get from applying (4.22) to a, b, c and d t .  The 
result can be written in the compact form 

(4.27) 

Acting with 0 on the commutation relations of the algebra (or using (4.18)), one finds 
that A, E, C, D satisfy the same commutation relations as a, b, c, d. In other words, 
A, E, C, D must be a representation of GL,,(2) with ordinary (complex) 4 x 4-matrices. 

Remark. If we denote this representation by 9, then (4.27) can be written as a 
convolution product: 

(4.28) 0 = 9+ = ( m 7 ) A  
in accordance with a general result due to Woronowicz [20]. Then 

(4.29) 

(with the counit E and ,yK defined in (4.14)) is also a representation of 
SP [19,24]. 0 

Later we will also need the action of 0 on the quantum determinant, i.e. 

0 ( 9 ) = 9 ( A D - p B C )  O(W) = W Y A D  -PBC)-' .  (4.30) 

Now we can use the above results to commute all the Maurer-Cartan forms in 
(4.15) to the right and obtain the following restrictions on the entries of the matrices 
A, B, C, D: 

A 2  I - P  - --I B I  1 B3,  =pq-'C2, 

A2 2 - P  - -1  (B12+1) P 2  =pq-1cZ2 

A 2  3 - P  - - I  B 3  1 

A 2  - - I  I B3,=pq-'C 2 
4 - P  8 4  

A3 - - I  I 
1 - 9  C l  

B3, = pq-'C2, 

D2 ,  = qB4, 

t The homomorphism properties of P and 0 then guarantee that (4.22) ((4.19) respectively) holds for any 
/€d. 
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A3 - -1  D2, = q( B4, + 1) 
(4.31) 

2 - q  C'2 

D2, = 4B4, 

D24 = qB', A3 - -1 

A41=(q-1 -p )C21+D'I  -1 D', =pC4 ,  

A3 - -1  3-4  (c ' ,+1)  

4 - 4  C'4 

= (q - '  - P ) C ~ ~ + D ' ,  D3,=pC4, 

A43 = (4-l  -p)C2,+ D', D', = p (  C4' + 1) 

(q-' - P ) C ' ~ + D ' ~ +  1 D3,=pC4,. 

In order to construct a (first-order) differential calculus we have to find a representation 
of GL,,(2) consisting of 4 x 4-matrices A, B, C, D satisfying the relations listed abovet. 
A and D should be invertible since otherwise there is no 'classical limit'. The commuta- 
tion relations for A, B, C, D (with q # 1 or p # 1) then imply det B = det C = 0. 

In principle it is now possible to solve the commutation relations for A, B, C, D 
to construct all left-covariant differential calculi. This is straightforward, but one has 
to distinguish many different cases and runs into a tedious analysis. Anyway, this 
results in a lot of different calculi, a simple example is presented in section 5. Some 
additional restrictions arise from the extension to higher-order forms as will be 
explained below. It is of more interest to find natural conditions to narrow down these 
possibilities. One such condition is 'bicovariance' which we exploit in detail in 
section 6. 

So far we have not discussed whether all the differential calculi obtained in this 
way are really different. Indeed, different matrices A, B, C, D (subject to the restrictions 

calculi (A', d )  and (A', d )  are said to be identical [20] if there is a bimodule isomorph- 
ism{:A'+k'suchthatC(df)=afVfEd.Actingwith<on (4.12)leadsto [ ( O " ) = e ' "  
and applying to (4.16) then shows that the commutation structure between left- 
coinvariant Maurer-Cartan 1-forms and elements of d must be the same for both 
calculi. 

Acting with d on (4.12) and using dZ=O we obtain the Maurer-Cartan equation 
(in matrix notation) 

aheve) dcte-Ine different ditrcrentia! CI!Cl?!i. n.is Is sec" I s  f.!!n?.ts. r?.tn diffcre.!i.! 

d0 = -08 (4.32) 

respectively 

doM =-CFL:,BKOL (4.33) 

c;,  = c:, = c:, = c:,= c:, = c:, = c:, = c:,= 1. 

with non-vanishing coefficients 

(4.34) 

We have not yet specified the product between I-forms. It is constrained by the 
equations which we obtain by applying d to  (4.16) using the Maurer-Cartan equation 
and (4.12). Assuming that d anticommutes with 1-forms, so that 

d(wf) = (dw)f - w df (4.35) 

t We then have a left-covariant bimodule, see the paragraph following equation (2.30) in [20]. 
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we obtain the following equations: 

[ A f C L N -  C$(A$A$+ B$C$)]OMON 

= A:(OIOL+ O L O ' ) +  BfOL03+ C f 0 2 0 L  

[ C f CLN - C $ (  C$ A$ + D$C',)]O'ON 

= A f 0 3 0 L +  C f (  040L+ O L O ' ) +  DfOL03 

r R K c C  ~ K , A ! . R < . +  R ! . ~ ! . M o ~ @ ~  
I - L  - m / l  - I l \ . - m - , Y  - , Y , - / Y , I -  

= A ~ O L 0 2 + B f ( 0 1 0 L +  BL04)+D:020L 

[Df CL,- C~(C$B' ,+D~D$)]OMON 

= B f 0 3 0 L +  CfOL02+Df(040L+ OL04), 

(4.36) 

Whereas the square of a 'classical' I-form always vanishes, this need not be so for the 
'quanium' i-forms. i n  order io mimic the ciassicai siruciure as ciose as possibiie it is 
perhaps a reasonable further assumption that the quantum version of the space of 
2-forms should have the same dimension as in the classical case and that 0'0' with 
I < J form a basis. Then, for example, can be expressed as a linear combination 
of these basis elements and should vanish in the classical limit ( p ,  q +  1). We will not 
use this additional assumption in the following. All our examples automatically turned 

It is not sufficient to find commutation relations for the I-forms O K  such that (4.36) 
is satisfied. In addition one bas to check consistency with the algebra d. Commuting 
U, b, c, d through the commutation relations for O K  in general leads to additional 
restrictions (see the example in section 5 ) .  

-..+ .- I.- :.. ",..---A"...-- ... :.I. :* 
Y Y L  L Y  "b 11. ' . * I " I Y Y L . I *  ,,,U1 I,. 

'Quantum' analogues of left-invariant vector fields are defined by [19] 

df=(V,f)OK (Vf E 4. (4.37) 

The Leibniz rule for d leads to a graded Leibniz rule for the operators V K  : d + d, 

vK(fh) = (V,f)@(h)L,  + f V &  (4.38) 

and (4.5) translates (using (4.20)) into the left-coinvariance condition 

A a V K  = (n@V,)A. (4.39) 

Acting with d on (4.37) leads to 

O =  ( V K V L f ) O K O L + ( V M f )  doM = ( V K V L -  C?LVM)fO"O". (4.40) 

Once we know the commutation relations for the 1-forms O K  we can read off from 
the last equation the commutation relations for the VK.  

In order to calculate the commutation relations with elements of .d (cf [22,23]), 
we interpret VK as operators acting to the left, i.e. instead of V K f  we writefv.. This 
is also suggested by the form of (4.38). A product of operators like V K V L  has then to 
be replaced by tLtK and the Leibniz rule leads to 

( f iL@(h)i-hBK)OK+dh=O (4.41) 

where h (and dh) is understood as a multiplication operator. Evaluating this equation 
_..:.I. L -  - 
W 1 U 1  n -U, h, i, d and using (4.:2) yidds 

a t K  = e L ( A i a +  C k b ) + S k a + S ) , b  
b 8 ,  = e L ( B k u + D : b ) + S i u + S i b  

(4.42) 

and the same relations with a and b replaced by c and d, respectively. 
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A co-product on the algebra generated by 8, is defined by 
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A ( v ~ ) ( f ,  h ) = V K ( f h )  (Vi h E 4 (4.43) 

(f; h)A(d,) = (fh)*, 

For our left-acting operators 9 ,  this takes the form 

=ffr,@(h)k + f ( h v , )  
=(L h ) ( d , @ @ ~ + l @ d , )  (4.44) 

A ( P K ) = V L @ @ k + U @ d K  (4.45) 

from which we conclude that 

and 
A@,?,) = ~ ( 9 , ) ~ ( 9 , )  (4.46) 

where 

( A  h ) A ( d , T d  = [ ( f h ) 0 , l V ~ .  (4.47) 

Hence, there is an interesting link between generalized derivations satisfying (4.38) 
and a co-product structure of the form (4.45). This can also be used in the inverse 
direction. Starting with a deformed Lie algebra (or some generalization), one can 
construct a differential calculus on the corresponding quantum group which is then 
defined via duality [24]. 

5. A simple differential calculus on GL,,*(Z) 

In the 'classical' case we have B = C = 0 and A = D = diag(1,l; 1; 1). A reasonable 
ansatz for a deformed differential calculus is therefore to keep B = C = 0 and to require 
that A and D are diagonal. The commutation relations for A, B, C, D are then satisfied 
and (4.31) restrict A and D to 

(5.1) A = diag(a,p-', q-' ,  1) 

@ g ' =  - r r g ' g =  

939'= - r r - 'O 'g '  

g49'= -8 'g4+(I  - r )g203 
9392= -r9293 
$482: - 0 l l Z l l 4  

D = diag(l, 4. P, P )  
with arbitrary constants a and 0 t. Evaluation of (4.36) leads to 

P" " 

(5.2) 049'= - p - ' g 3 g 4  

( = (9')' = 0 

t U and P have to be different from zero. Otherwise there i s  no 'classical limil' of the 'quantum' differential 
calculus. 
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where 

r=pq. 

Equation (4.16) explicitly reads 

@'a = a d  Olb = bO' 

e2a = up-'@ 02b = bqe 

e3a = aq-'e3 O'b = bp0' 

e4 = ao4 04b = bp8' 

2 

(5.3) 

(5.4) 

where the remaining equations are obtained replacing a by c and b by d. Using these 
equations we can commute a and b from right to left on both sides of the third equation 
in (5.2). Assuming r f i this eniorces 

P = r  ( 5 . 5 )  

D = rA (5.6) 

and the squares of all 8" vanish. For the left-invariant vector fields the following 
commutation relations result from (4.40): 

a 7 r-I 

so that 

v,V2-r-'v2v, = v 2  
VlV3-  rV,V, = -rV3 
n n  -nn --n * 1 * 4  ' 4 " , - "  

(5.7) 
V2V, - rV3V2 = V I  - rV,+ ( r -  l )V ,V4  

V2V4-rV4V2=V2 

v 3 4  V -r-'V.,v3= -r-'v,. 

For r = i we recover tine commutation reiaiions of the Lie aigebra of G i i i ,  C) as 
expressed in the canonical basis: 

(5 .8)  

The commutation relations between the left-invariant vector fields and elements of &4 
are obtained from (4.42): 

$,a = ar(V, -U) 

V2a = apV, V2b= bq-lfi,-aq-' 

V,b = b e l  

(5.9) V b - b  - 1 -  V3a = aqV3 - bq 3 - P  v3 

V4a = aV4 v,b= br-'(v.,-U) 

(and the equations obtained by a + c, b +. d ) .  These are consistent with (5.7). 
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In order to evaluate the co-product (4.45) we need the operation of 0 on a general 
monomial: 

Q(a*d'b"c") = O(a)*O(d)'O(b)"O(c)'  

a*d'b"c"A*D'D"A" 

= a kdlbmCnrl+mAk+l+m+n (5.10) 

i-ience 

Q = rXAS (5.11) 

where the linear operators X and F count the number of bs and ds ,  respectively the 
total number of a, b, c, d s  in an ordered monomial: 

Xakd'b"c" = ( I +  m)a*d'b"c" (5.12) 

Ta*d'b'"c" = (k+l+ m+n)a*d'b"c". (5.13) 

Obviously T commutes with all v K  and with X. Using (5.9) we can evaluate 9, and 
v4 on a general monomial. The results are 

(5.14) 

Inserting these expressions in (5.7), we find 
r x v  -v,r"+l 

r x e  - v  9(-1 

v 2 v 3 - r ~ ' v , v ~ = ( n - r 2 x - 9 ) / ( l  - I )  

2 -  

(5.15) 3 -  3 r  

(and that T commutes with v2, v3 and X). The first two relations lead to 

[X, v2] = v2 [X, Q3] = -v3. (5.16) 

Introducing 

2: = $2r-%14 2: = v 3 r - W 4  X = 2 X - F  (5.17) 

the above commutation relations are transformed to 

which is a more familar deformation of the Lie algebra of the general linear group 
[13]. We will show that also the co-product (4.45) with (5.11) is transformed to the 
form given by Drinfel'd [13]. Inserting the expressions for 9, and v4 in (4.45), we find 

A ( r 3 Y ) = r X O r X .  (5.19) , A ( 9 ( - 5 ) = ~ ( , X - ! 7  r X - 9 @ r 1 - - 9  rA19() = ) =  

Therefore 

A(X)=U@X+X011 A ( F )  = J @ Y +  (5.20) 

and also 

A ( X )  =lOX+XO11. (5.21) 
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The commutation relations (5.18) are preserved under a rescaling of 9: by some 
function of the operator r a n d  a simultaneous rescaling ofgL with the inverse function. 
This rescaling influences the corresponding co-product formulae. With the choice 

(5.22) 8 / 4  8 / 4  4 r / 4  -%/4 9+=9:p 4 

A ( 9 + ) = 9 + 0 p  4 +P 

A($-) =9-0.p 4 +P- 4 

we obtain 

0 9, ( X - 8 ) / 4  (X+F)/4 - (Z -8 ) /4  - ( Z + r ) / 4  

(X+71/4 (X-81/4 (X+81/4 - ( X - 8 ) / 4 @ 9 _ ,  

4 
(5.23) 

Using a simpler differential calculus as in [23] we arrived at the same deformation of 
the Lie algebra of GL(2, @) and the same co-product formula. With the co-unit 

E (  r) = &(%) = E ( $ + )  = 0 &(I) = 1 (5.24) 

and the antipode 

S(Y)=-T  S( %) = -% S Y * )  = -(Pq)*/49*(P4)-X/4 (5.25) 

it becomes a Hopf algebra. There are other approaches to relate deformations of the 
group and deformations of the corresponding Lie algebra (see [33,34], for example). 

6. Bicovariant differential calculi on GLp,(2) 

So far we only dealt with left-coaction and left-covariance. In the same way we may 
consider a right-coaction 

A*: A’(&) + A‘(&)@ sp (6.1) 

satisfyingt 

A,d=(d@l)A (6.2) 

Asn(fwh) = A(f)Aw(w)A(h) V i  h E d, w EA’(&). (6.3) 

A I-form w is right-coinvariant if 

A,w = w @U. (6.4) 

Right-coinvariant Maurer-Cartan 1-forms on GL,,,(2) are given by 

The left-coinvariant 1-forms e K  and the right-coinvariant w K  are related by 

o=s(; ; ) w ( @  c d  b )  (6.6) 

t (6.2) is only needed to demonstrate the right-coinvariance of (6.51, 
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Now we calculate the right coaction on  O K  by expressing them in terms of the w K ,  
using the homomorphism property of the right-coaction, the right-coinvariance of the 
w K ,  and translating the latter back into the 8,. The result is 

(6.8) As( 0') = 8' 0 R,' 
with 

S ( a ) a  S(a)b S(c)a S(c)b 
S(a)c  S(a)d S(c)c S(c)d 
S(b)a S(b)b S ( d ) a  S ( d ) b  
S(b)c S(b)d S ( d ) c  S(d)d 

The matrix R (with entries in d) has the properties (see also theorem 2.4 in [2Ol) 
A(R;) = R , ~  OR,' (6.10) 

E(R,') = 6: (6.11) 

s(R,~)R,' = 6: = R,,s(R,') (6.12) 

The existence of a 'bi-coaction' [20], i.e. a left- and a right-coaction, imposes 
restrictions on the differential calculus, more precisely: on the commutation relations 
between left-coinvariant 1-forms and elements of d. This is seen as follows. We have 

where we have used (2,lh) to derive the last equation: 

AS(8'f) =As(O')A(f )  = (8"@RK')A(f)  

AS(@(f):O') =A(@(f):)Aa(O') = A ( @ ( f ) : ) ( O K  OR,'). 

which has to be the same as 

Hence 

( O K  @ R ~ ' ) a ( f )  = A ( @ ( f ) : ) ( O K  OR,') Wf E d. (6.13) 

Applied to a, b, c, d this leads to the following equationst constraining the matrices 
A, B, C and D :  

(6.14) 

(6.15) 

R,'(A:u+ BFc) = (aA; + bC;)R,, 

R,'(C:a + D:c) = (CA; + dC;)R,, 

R,'(A:b+ B:d) = ( a B ;  + bD:)R,K 
RK'(C: b+D:d) = (cBL +dDk)RJK. 

(6.16) 

(6.17) 

Remark Using 9 to denote the representation of the algebra given by the matrices 
A, B, C, D (as in a previous remark), these equations can be written as 

RK'(9,j Ol)A(f) =( IO S',)A(f)R," (6.18) 

with f = a, b, c, d. In terms of convolution products this reads 

--* R. , ' ( f*FK;)=(F '_Y */ )R; ,  !6.!?! 

0 (cf equation (2.39) in [ZO]). 

t It is actually suficient to evaluate this equation on (I, b, c, d since the homomorphism properties of A 
and 0 then e n w e  that it  also holds far an arbitrary f €  99. 
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Inserting the result (6.9) for the matrix R, using the commutation relations for a, b, c, 
d, !&’ and taking (4.31) into account, the most general solution of these equations is 
given by 

0 0 B: 0 D:  0 0 D: 
0 48 0 

where 

p = ( 1  + A :  - r A : ) / ( l +  r )  

A:= r D : - [ 2 r + ( r -  l )A:+r ’ ( r -  l ) A : ] / ( l +  r )  

A:= 0: + ( 1  - r)A: 

B : = - ( l - r A : + r 2 A : ) / ( l + r )  

B : = p [ (  1 + A : +  r2A:)/(  1 + r )  - D:] 

(6.20) 

(6.21) 

1 

4 
B : = - [ r ( l + A ; + A : ) / ( I +  r ) - D : ]  

B4-- - ( r  - A: + *A: ) / (  1 + r )  

D : = -  0: - [ 2 + ( l -  r )A:+ r ( r -  l ) A i ] / ( l  + r )  

D:=A:+(l-  r)A: 

1 
r 

and r=pq .  In addition,the matrices A, B, C, D have to satisfy the same commutation 
relations as a, b, c, d. This leads to the following equations: 

B:B:+ B:B;=O 

(A;  - a)B;+AqBa =o 

(A:-  p ) ~ : +  A:B: = o 

( A :  - rP)B: + A:B; = 0 

( A : -  rp)B:+A:B:=O 

( D :  - p ) ~ : +  D:B;=O 

(Dl - rp)B:+rA:B:=O 

( D z -  rp)Ba+ D:B: = 0 

(D:-P)B;+ rA$: = O  

(6.22) 
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and 

r(A:)2-A~D:+-B2B,-0 1 - r  1 3 -  

P 

1 - r  

P 
(A: -A:)D:-(D: - D:)A:+- B:B:= 0 (6.23) 

As a consequence of (6.22), 

B:B:[A: + A:-(l+ r)P] = 0 

B:B;[A:+A:-(l+r)P] =O. 

If A: + A i -  (1  + r)P # 0 (and if we require a classical limit) we are forced to set r =  1. 
This case still deserves further discussion and will be treated at the end of section 9. 
But in the following we concentrate on the case where the deformation parameters 
p and 9 are not constrained. Let us therefore turn to the complementary case 
A:+A:-( l+r)p=O. This means 

D:=I-A:.  (6.24) 

Surprisingly, all the remaining equations (6.22) and (6.23) now reduce to the single 
equation 

1 
(A;)2- - [ l+r2-( l  + r - r 2 +  r3)A:]AI 

r 

+ 1 - ( 1  +2r- r2)Ai-(l  + r +  = 0. (6.25) 

We have arrived at our main result: 

The most general bicovariant first-order differential calculus on GL,,(2) (possessing 
a classical limit) has two branches depending on one additional parameter s:= A: 
(if we understand the last equation to be solved for A;)t.  

Remark From theorem 2.5 in [ZO] we conclude that the differential calculus with 
(6.20), (6.21). (6.24) and (6.25) defines a ‘bicovariant bimodule’ [20]. A first order 
bicovariant differential calculus always admits a consistent extension to higher order 
(2-forms etc), an important result due to Woronowicz [20] (see section 7 for some 
details). U 

For the special parameter value s = 0 the two solutions are listed in the following, 

t There is one further solution depending on 5 if we restria p and q by p =  I / q ,  see section 9. 
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Example 1. 

(6.26) 

From (4.36) we obtain the commutation relations for the left-coinvariant Maurer- 
Cartan forms: 

1 - r  
92B3 

fPel=-re192+(1 - r ) 9 ’ e 4  

8“9’ = -%‘e4 + ( r  - 1)9193 

,9392= -g2@3 

9492 = -g2@4 

949’= -9394 

(9’)’= ( e y =  (e4)2=0. 

Commuting U, b, c, d through these relations does not lead to additional restrictions. 
The algebra of left-coinvariant vector fields is 

V2Vl - rV = V2 

1 -  1 -  
r r 

V3V1--V,V3= --v, 

v4v1 -a,v,=o 

(6.27) 

(6.28) 

This is consistent with the commutation relations (4.42) between V K  and elements 
of d. 
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Example 2. 

I ~ / r  0 0 o \  

(6.29) 

(6.30) 

g4#'= - ~ o ~ B " +  ( I  - r)0'9' 

(1 -r)9293. 

Again, these equations are consistent with the commutation relations between O K  and 
elements of d. The algebra of left-coinvariant vector fields is 

(6.31) 

V.,V3-rV3V4=-rQ3. 

Again, this is consistent with the commutation relations (4.42) between eK and elements 
of sp. 

Relations (6.29) and (6.30) are equivalent to the commutation relations of example 
7 in [29] (in the case where the 'monoi'de quantique' corresponds to a 'dkformation 
d e  I'objet commutatif'). There one can find the commutation relations in terms of the 
differentials of a, b, c, d (instead of the Maurer-Cartan I-forms BK)t. There is a 
generalization of this differential calculus t o  quantum deformations of GL(n) [30]. 

t In order to compare the formulae in [29] with ours one has to replace q by l / q  and p by I l p .  
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Our general result also shows that the simple left-covariant differential calculus 
considered in section 5 is not bicovariant. 

In order to calculate the O K  commutation relations (i.e. the deformed wedge 
product) for the general bicovariant calculus, (4.36) appears to be rather intractable. 
Fortunately, there is a trickier way to do it. After some preparations in the following 
section we will return to this problem in section 8. 

7. Higher-order forms in bicovariant differential calculus 

In this section we recall the essential steps of Woronowicz’ important result that a 
bicovariant first-order differential calculus always admits a unique extension to higher- 
order forms [20]. All the results of this section (and many more) are contained in his 
work. We have merely arranged them in a different way, concentrating on what we 
need in the following and illustrating some points with examples. 

There is a kind of inverse formula of (4.16): 

fe’ = eJ6(f); .  (7.1) 

Applying (4.16), we find 

&(o(f);)=fs; V f € d  (7.2) 

and therefore 

with the notation of section 4. Then 

fer = e’(no 9’’ 0 s-’)a(f) = e’(#, o s - ’  *f) 
(cf (2.14) in [20]). 

Let us introduce [20] 

G K  = BLS(RLK) .  

These I-forms are right-coinvariant. To verify this, one needs the identity 

(7.4) 

(7.5) 

A ( s ( R : ) )  = S ( R , ’ ) @ S ( R , ~ )  (7.6) 

which follows from (6.12) by application of A. The 1-forms & j K  are not identical with 
the w K  defined in (6.5) (or (6.7)). But since they are also right-coinvariant, they must 
be a linear combination of the w with coefficients in @. For the bicovariant calculus 
in example 1 of section 6 one finds 

&I= r w l + ; ( r - 1 ) W 4  

2 
& 2 =  qw 

&’= ( p 2 I q ) o )  
2 4  G 4 = r  w . 

(7.7) 
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Furthermore, 

The LHS is right-coinvariant and the RHS is manifestly left-coinvariant. Therefore 

p = 8'+ 8*/r (7.9) 
is a 'bi-coinvariant' I-form: 

A&) = 10 P A, (p )=p@U.  (7.10) 
Using (7.5) and (6.10) the condition of bi-coinvariance for a 1-form p=pKBK 
translates to 

RKLpL = PK P K  (7.11) 

only bi-coinvariant 1-form on GL,,(2). This does not depend on the choice of 
bicovariant differential calculus. 

1: is. easy to thg e'+ 534;: is. fG E-o!~p!ica:iGn bj a rdrLber) the 

The next result is the analogue of (7.4) for the right-coinvariant 1-forms GK. 

Lemma. For a bicovariant differential calculus, 

Proof: First we note that 

(see also proposition 1.9 in [35]) where U is the flip automorphism 

f;" = J L ( f * S K L O S - ' )  (Vf E 4. (7.12) 

Pas- '=  u(S-'O S-')A 

u ( f @ h ) = h O f  V J h E d .  

( S - ' f ) *  F', = (F', @U)A(S-'f) 
Then 

= (SJ,  OU)u(S-'O S-')A(f) 
= U (  ( S - ' @  S', 0 S-')A(f)) 

" 
E .doc = .d 

= ,!-'((U@ S', 0 S-')A(f) 
= S-'( scJ,.s-I*f) 

S' ,*(S- ' f )  = s-'(f*scJ,.s-'). 
and similarly 

LJsing !hege iden!i!ks in the bicnvafianc~ condition !5.!9) and acting d!h .9 on !he 
resulting equation yields 

(S",oS-'*f)S( R K ' )  = S (  R J K ) ( f *  b', OS- ' ) .  

As a consequence, 
f - K  o - - f O L S ( R L K )  

= e M ( S L , ~ S - ' * f ) S ( R L K )  

= O'S(R,")(f* sKLoS- ' )  
= & L ( f t s c K L O S - l )  

which is the asserted formula. U 
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The corresponding inverse formula is [ZO] 
i"f =( f * S K t ) i L : =  b( f ) ; & l  

where 

qc" ; ) = ( A  C D B ) ( a  e d '  b )  

(7.13) 

(7.14) 

Classically 2-forms are introduced by antisymmetrization of tensor products of 
1-forms. To do something similar in the non-commutative case, one needs an analogue 
of the (anti-)symmetrization operation. Any element T E A ' ( S ~ )  Bd A'(&) can be 
written ast  

T = T i j o 1 @ , & '  (7.15) 
with T~~ E d. Define [20! 

U: A'(&) Bd A'(&) + A'(&) 0, A'(&) 

by 

U ( T ) =  T 1 f l ( o i  0, iJ)  = T,GJ @,8'. (7.16) 
Then 

(7.17) 

d T f )  = dl)f (7.18) 

since 

~ ( o ~ ~ ~ ~ ~ ~ ) = ~ ( e ~ o , ( f f ~ ~ ~ ) i ~ )  
= u ( o K ( f * g t L M  O,iM) 

= U ( 4 E K N * ( f * S L M ) B N  @,P) 
= (P, f )  F L & p  0, O N  

= i L ( P , * f ) @ , O N  

=i'@, (SK,+f)BN 

= i L @ , o K j  

= u ( o K  @, ; L )  f (7.19) 

where we used the associativity of the convolution product, U is therefore a bimodu!e 
homomorphism (and moreover an isomorphism). It replaces and reduces to the 
permutation operation in the classical case. The exterior product of, for example, 
left-coinvanant Maurer-Cartan 1-forms is now defined by 

(7.20) O W =  or  A, e'= (n-~)o'o, o' 
and this extends in an obvious way to higher-order forms. U has the property 

u(e ado) = o o, o (7.21) 

t The tensor product over d means that we identify 0 Bd fw with Sf Qd w for all I-forms e, w and f E d. 
For 2-farms this property was already presumed in writing them as, for example, BKOL. 
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for any left-coinvariant 1-form 0 and any right-coinvanant 1-form w. Applied to the 
bi-coinvariant 1-form p introduced in (7.9) this leads to 

(7.22) 1 1 
o = p  hs lp  =(el)'+- ( s ~ ) ~ + -  (e1e4+ 8%') 

r2 r 

and this holds for all bicovariant calculi on GLJ2). 

8. More on bicovarisot dilfereotial calculus 

Another interesting result obtained by Woronowicz (cf the proof of theorem 4.1 in 
[ZO]) is that the exterior derivative of a bicovariant differential calculus can be expressed 
I S  

(Vf E 4 (8.1) 
1 

d f = k  [ ~ f l -  

d e = z C p ,  el+ (VO E A ' ( d ) )  (8.2) 

(and correspondingly for higher forms) where p is a hi-coinvariant element of the 
(possibly to be extended) space of 1-forms. The I-form p given in (7.9) is therefore a 
candidate. The Leibniz rule is then automatically satisfied and we have d2 = 0 as a 
consequence of (7.22). Using (4.12) we find that (8.1) holds with 

1 

for the general bicovariant differential calculus in section 6 (A: and s = A: are subject 
to equation (6.25)). In particular, we have N = r -  1 and N = (1 - r ) / r * ,  respectively, 
for the two bicovariant calculi given explicitly in section 6. The 'normalization constant' 
N thus depends on the respective bicovariant calculus. 

Equation (8.2) and the Maurer-Cartan equation (4.32) yield 

and this equation determines some commutation relations between the Maurer-Canan 
1-forms OK. Together with (7.22) and (4.36) a lengthy calculation leads tot  

e203 
4 2 -  r(1-  r +  N) 

( e )  - l + r ( l + N )  

t The e'e' term (with the 'wrong' ordering) in the last equation is not a misprint. We just wanted to avoid 
a lengthier expression which arises by reordering it. 
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( - r [ 2 +  N(1+ r - s ( l +  r 2 ) ) ] O 1 e 2  1 
1 + r ( 1  + N )  

828‘ = 

+[1- r -  r N ( r -  s(1 + r2))]e2e4)  

(8 .5)  

e2e3 2 + ( r + l ) N  
1 +r ( l  + N )  

e4e1= - e1o4+(r -  1) 

8 3 0 2 =  - 0 ~ 0 3  

0482 = (-[2+ N(1+ r - s ( l +  r2))]f3284 
1 + r ( l +  N )  

+ [ r -  1 - N(1 - S ( I  + r2))]e’6’) 

8483 = -- I ( e ~ +  T a l e s +  r ( l +  ~ ) ~ e l )  
I+rN 

V?hPYP 

M = 1 + r +  N[r2+ r+ 1 - s (r3+ r2+ r+ l ) ] .  (8.6) 
These relations are consistent with the commutation relations between O K  and elements 
of SI, The corresponding left-coinvariant vector fields satisfy the following algebra: 

1 - r + N ( l  -s(l +r2))  
1 + r ( l +  N )  + v 2 v 4  

v i  l - r ( l + r N ) -  r ( 1 - r + N )  
r+ r2(1 + N )  1 + r ( l +  N )  

- V;- 

v,v2 2+ N ( l + r - s ( l +  r 2 ) )  

1 + r ( l+  N )  
1 - r+ rN(s(1  + r2)  - r )  

1 + r ( l +  N )  v4v2 = v2v&+v2- 

{2+ r ( r - ~ ) +  N[I + r+ r ’ - s ( ~ + r ~ ) ~ ] } S ~  
1 

M (  1 + r N )  
- 

r 
M (  1 + r N )  

- 

+ N 2 ( l + r - s ( l + r 2 ) j ] b 3 v 4  

[ I  - r +  N ( 2 -  r2+ rs( l+ r2) )  
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( 1  + r2+  N [ l  +2r2+ r3 - s(1 + r +2r2 + r3 + r4)]  
1 

M (  1 + rN) 
v4v3 = 

1 
M 

+ r 2 N 2 [ r - ~ ( 1 + r 2 ) ] } v 3 ~ a + - [ 1  - r + r N ( s ( l +  r2 )  - r ) ] e I ? 3  

1 
M (  I + r N )  

- {2- r +  r2+  NCI + r +  r3 -s(l + r2)21}83. 

Besides r =pq this algebra depends on the new parameter s. Note that N is a function 
of s via (8.3) and (6.25). The commutation relations for the vector fields are consistent 
with (4.42). 

It should still be investigated whether the above algebra is a Hopf algebra. However, 

in the co-product formula (4.45) has to be expressed in terms of the left-coinvariant 
vector fields (see the corresponding calculation in section 5). 

the corresponding ca!cu!ation is no! rimp!e. !n par!icu!ar, the opera!or 9 appearing 

9. Non-staodard bicovariant calculi on GL42) 

In this section we extract some simple, but interesting examples from the general results 
of the sections 6 and 8. This concerns deformed differential calculi on the classical 
general linear group GL(2). Actually we will only set ' 

r = l  (9.1) 

i.e. p = l / q ,  and therefore still allow a deformation of GL(2). As most interesting, 
however, we regard the deformations which are even present in the commutative case 
where also q = 1. With the above restriction, there are two solutions of (6.25). The 
first is 

A : = 1 - 3 s  (9.2) 

with N = -4s and the wedge product is given by 

o2o1 = ( s -1)8 'o2+so2o4 

[ ( I  - i )o 'o3+;O3o4]  
(9.3) 
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with I:= 2s. The algebra of vector fields is 

v2vl=(l  -F)v,v2+v2-sa2v4 

v,v, = - (( 1 - I)vlv3 + i9,V4) 

v4v,=v,v4 
v3v2=v2v3+-y(vl  -v4-I(v;-v:)) 

v4v2= (1 - I)V2S4- a,v2+v2 

v4v3=- ((1 -I)v,v4+aIv3-v3). 

1 
1-29 

1 
I-s 

1 
1-21 

The matrix representation of the algebra SP is in this case 

(9.4) 

1-3s 0 0 S 0 -2s 0 0 
0 

0 0 (1-2s)/q 0 
0 0 1-s  0 -2s 0 0 

(9 .5)  

0 "). 0 0 -2s 0 , 0 

0 0  0 0 (1-2s)lq 
0 

0 0 -2s 0 S 0 0 1-35 

The second solution is 

A : = l + s  (9.6) 

which leads tot N = 0 and the wedge product turns out to be the classical one, 

(9.7 ) eKeL = - e L e K  

independent of the parameter s. The algebra of vector fields then also coincides with 
the classical one. The form of the matrices 

A= j';': : gj  B =  i" 2 s / q  0 :: 0 2 s / q  :) 

c=[2; : : 2:) D = [  H 4 0  0 l / q  :) 
0 I / ¶  

-s  0 0 1 - s  0 0 0  0 

0 0 0  0 I-s 0 0 -s  

0 0  0 0 0 l+s 

(9.8) 

? (8.1) and (8.2) then only make sense in the limit r -  1, r f  I 
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shows that this calculus is nevertheless not trivial. These matrices have some nice 
properties t 

BA= BD = B CA= CD = C . B2= C2= BC = CB=O (9.9) 

and 

A k = A ( h , q k )  D' = D(ls, q') AD = D A  = diag( 1, q2,  q-2, 1) (9.10) 

where A =A(s ,  q )  expresses the dependence of the matrix A on the parameters s and 
q. In particular, these properties make it easy to evaluate the action of 0 on a general 
monomial which is needed to calculate the co-product (4.45). 

In the construction of bicovariant differential calculi on GL,,(2) in section 6 we 
disregarded one case in which we were forced to restrict the parameters p and q by 
(9.1) (see the paragraph before (6.24)). This additional case is easily worked out and 
leads to 

/ l + s  0 0 s \ 
(9.11) 

Solving (4.36) we find that also in this case the wedge product and consequently the 
vector field commutation relations are the classical ones. We know that there is no 
extension of this calculus to a bicovariant calculus with unconstrained parameters p 
and q. But there may be a left-covariant differential calculus on GL,,(2) which for 
p = l / q  reduces to this bicovariant calculus. The matrix A has the property 

A"=(A(s ,  q ) )"=A(s '" ' ,q")  (9.12) 

where 

Si") - ?  -J(1+2s)" -11. (9.13) 

For q = 1 the three examples in this section present non-standard bicovariant 
differential calculi on the classical Lie group GL(2). 

10. Conclusions 

In order to learn more about non-commutative geometry and in particular differential 
calculus on quantum groups it is important to elaborate examples. We have tried to 
treat the two-parameter deformation of GL(2) as systematically and complete as we 
could. Nevertheless, the reader will certainly find some points where more efforts 
should have been invested. Already for this rather simple quantum group some 
calculations could hardly be carried out by hand and we employed the computer 
algebra system REDUCE [36] to do the job. 

t B*=O 2nd c2=0 even hold for the general bicovariant CIICUIUI. 
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Our main result is the explicit construction of the most general bicovariant differen- 
tial calculus on GL,,(2). It consists of two branches which depend on one new 
parameter. Different values of this parameter determine different calculi. Even in the 
classical limit p ,  q + 1 (which corresponds to the classical group) the new parameter 
deforms the differential calculus. This parameter also enters the ‘Lie algebra’ of 
left-coinvariant vector fields. It remains to be investigated whether this generalized Lie 
algebra has a Hopf algebra structure and what the uniqueness statement in [13] (see 
also [37]) concerning quantized Lie algebras has to say about it. 

Bicovariance seems to be a very natural condition (see [24]) and it guarantees a 
consistent higher-order differential calculus. But there may be further or even different 
conditions to single out differential calculi. Applications of non-commutative differen- 
tial calculus in physical models should tell us more about this. 

One bridge to physical models is due to the expectation that non-local charges in 
certain conformal and also some massive two-dimensional quantum field theories 
should be represented by left-coinvariant vector fields on a quantum group, i.e. the 
generators of the ‘quantum Lie algebra’. Also, the geometric approach to msr symmetry 
formulated in [40] can be generalized to quantum group symmetries [24] (see also 
[41]). Here the (quantum) exterior derivative takes the role of the BRST operator and 
the ghosts are identified with left-coinvariant 1-forms. 

Less ambitious than the programme outlined in the introduction is the exploration 
of Kaluza-Klein type models where extra spacetime dimensions are assumed to  form 
a quantum group. It then has to be worked out how the choice of a differential calculus 
influences the physical predictions. All the applications of non-commutative differential 
geometry to elementary particle physics which we are aware of are formulated in a 
kind of Kaluza-Klein framework [2,7, 10, 111. In [lo, 111 the extra ‘dimensions’ just 
consist of a finite set of points, however. 

For the orthogonal quantum groups a matrix representation, which defines a 
bicovariant differential calculus was given in 1261 in terms of the R matrixt. 

(F(M’,)A,) = (kex”Jk-’)@**8). (10.1) 

This formula gives indeed also a representation of GL,,(2), but it does not satisfy 
(4.31). Perhaps similar formulae work. 

The quantum group GL,,(2) is not just a toy model since it contains a deformed 
SL(2, C). To arrive at a quantum Lorentz group [38,39] one has to add, however, a 
generalized complex conjugation, i.e. a *-structure [20] on the algebra. Our work still 
has to be extended taking this additional structure into account (see also [19]). 

For a discussion of some technical problems which one meets in the case of 
non-compact quantum groups we refer to [38]. 
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